Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844241

RESUMO

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Assuntos
Anexina A2 , Animais , Camundongos , Anexina A2/genética , Apoptose , Células Epiteliais , Epitélio , Espécies Reativas de Oxigênio
2.
Reproduction ; 164(2): 19-29, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666814

RESUMO

In brief: In oocytes, chromatin structure is loosened during their growth, which seems to be essential for the establishment of competence to accomplish the maturation and further development after fertilization. This paper shows that a linker histone variant, H1foo, is involved in the formation of loosened chromatin structure in growing oocytes. Abstract: During oogenesis, oocytes show a unique mode of division and gene expression patterns. Chromatin structure is thought to be involved in the regulation of these processes. In this study, we investigated the functions of linker histones, which modulate higher-order chromatin structure during oogenesis. Because H1foo is highly expressed in oocytes, we knocked down H1foo using siRNA and observed oocyte growth, maturation, and fertilization. However, H1foo knockdown had no effect on any of these processes. Overexpression of H1b or H1d, which has a high ability to condense chromatin and is expressed at a low level in oocytes, resulting in tightened chromatin and a decreased success rate of oocyte maturation. By contrast, overexpression of H1a, which is expressed at a high level in oocytes and has a low ability to compact chromatin, did not affect growth or maturation. Therefore, H1a, but not other variants, might compensate for the function of H1foo in H1foo-knockdown oocytes. These results implicate H1foo in the formation of loose chromatin structure, which is necessary for oocyte maturation. In addition, the low expression of somatic linker histone variants, for example, H1b and H1d, is important for loosened chromatin and meiotic progression.


Assuntos
Histonas , Oogênese , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Oogênese/genética
3.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168076

RESUMO

The pericentromeric heterochromatin of one-cell embryos forms a unique, ring-like structure around the nucleolar precursor body, which is absent in somatic cells. Here, we found that the histone H3 variants H3.1 and/or H3.2 (H3.1/H3.2) were localized asymmetrically between the male and female perinucleolar regions of the one-cell embryos; moreover, asymmetrical histone localization influenced DNA replication timing. The nuclear deposition of H3.1/3.2 in one-cell embryos was low relative to other preimplantation stages because of reduced H3.1/3.2 mRNA expression and incorporation efficiency. The forced incorporation of H3.1/3.2 into the pronuclei of one-cell embryos triggered a delay in DNA replication, leading to developmental failure. Methylation of lysine residue 27 (H3K27me3) of the deposited H3.1/3.2 in the paternal perinucleolar region caused this delay in DNA replication. These results suggest that reduced H3.1/3.2 in the paternal perinucleolar region is essential for controlled DNA replication and preimplantation development. The nuclear deposition of H3.1/3.2 is presumably maintained at a low level to avoid the detrimental effect of K27me3 methylation on DNA replication in the paternal perinucleolar region.


Assuntos
Histonas/genética , Histonas/metabolismo , Zigoto/crescimento & desenvolvimento , Animais , Replicação do DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Lisina/química , Masculino , Metilação , Camundongos , Zigoto/metabolismo
4.
Sci Rep ; 10(1): 19396, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173118

RESUMO

After fertilization, the zygotic genome is activated through two phases, minor zygotic activation (ZGA) and major ZGA. Recently, it was suggested that DUX is expressed during minor ZGA and activates some genes during major ZGA. However, it has not been proven that Dux is expressed during minor ZGA and functions to activate major ZGA genes, because there are several Dux paralogs that may be expressed in zygotes instead of Dux. In this study, we found that more than a dozen Dux paralogs, as well as Dux, are expressed during minor ZGA. Overexpression of some of these genes induced increased expression of major ZGA genes. These results suggest that multiple Dux paralogs are expressed to ensure a sufficient amount of functional Dux and its paralogs which are generated during a short period of minor ZGA with a low transcriptional activity. The mechanism by which multiple Dux paralogs are expressed is discussed.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Zigoto/metabolismo , Animais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zigoto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...